npm-mcp-packages-comparison
Purpose
Comprehensive comparison of npm packages and Model Context Protocol (MCP) servers for AI image generation across multiple providers (OpenAI, Google, Stability AI, Midjourney alternatives).
Executive Summary
2025 Landscape:
- OpenAI DALL-E models deprecating - DALL-E 2 & 3 will be sunset on May 12, 2026
- GPT Image models are the new OpenAI standard (gpt-image-1.5, gpt-image-1, gpt-image-1-mini)
- MCP adoption accelerating - OpenAI officially adopted MCP in March 2025
- Multi-provider packages increasingly important as vendor landscape fragments
- Google Nano Banana offers best free tier (500 requests/day)
NPM Packages Overview
Multi-Provider Packages (Recommended)
1. ai-image
Package: npm install ai-image
Description: Unified wrapper for image generation APIs with CLI support
Features:
- ✅ Supports OpenAI GPT Image and Replicate
- ✅ Easy-to-use CLI with npx support
- ✅ Programmatic API for integration
- ✅ Custom size, quality settings
- ✅ Multiple model support (DALL-E 2/3)
- ✅ Provider selection via
-p, --provider <provider>flag
Best For: Projects needing both OpenAI and Replicate with simple CLI access
CLI Usage:
npx ai-image "a futuristic city" -p openainpx ai-image "abstract art" -p replicateProgrammatic Usage:
const { generateImage } = require('ai-image');const image = await generateImage('a futuristic city', { provider: 'openai' });2. Vercel AI SDK (ai)
Package: npm install ai @ai-sdk/openai @ai-sdk/anthropic @ai-sdk/google
Description: Unified API for multiple LLM providers with image generation support
Features:
- ✅ Unified API across OpenAI, Anthropic, Google, and more
- ✅ Image generation via agents (
ImageGenerationAgentMessage) - ✅ React components for UI (
ImageGenerationView) - ✅ Streaming support
- ✅ Production-ready with enterprise features
- ✅ Vercel AI Gateway integration
Best For: Full-stack applications using Vercel ecosystem, React-based UIs
Example:
import { createOpenAI } from '@ai-sdk/openai';import { generateImage } from 'ai';
const openai = createOpenAI({ apiKey: process.env.OPENAI_API_KEY });const result = await generateImage({ model: openai.image('gpt-image-1.5'), prompt: 'a serene landscape',});3. Imagine.js (@themaximalist/imagine.js)
Package: npm install @themaximalist/imagine.js
Description: Multi-provider image generation with easy provider switching
Features:
- ✅ Prevents vendor lock-in with easy provider switching
- ✅ Supports
a111(local AUTOMATIC1111),stability,replicate - ✅ Integrates with LLM.js for prompt enhancement
- ✅ Simple API design
- ✅ Remix and quality-boost prompts automatically
Best For: Developers wanting maximum flexibility and local inference options
Example:
const Imagine = require('@themaximalist/imagine.js');const imagine = new Imagine({ provider: 'stability' });const image = await imagine.generate('cyberpunk cityscape');OpenAI-Specific Packages
4. openai (Official)
Package: npm install openai
Description: Official OpenAI SDK with image generation, editing, and variations
Features:
- ✅ Official support from OpenAI
- ✅ GPT Image models (gpt-image-1.5, gpt-image-1, gpt-image-1-mini)
- ✅ Legacy DALL-E 2 & 3 support (until May 2026)
- ✅ Image generation from scratch
- ✅ Image editing with prompts
- ✅ Variations (DALL-E 2 only)
- ✅ TypeScript support
Important: DALL-E 2 and DALL-E 3 are deprecated and will stop working on May 12, 2026. Use GPT Image models instead.
Example:
import OpenAI from 'openai';const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
// Generate with GPT Image (new)const response = await openai.images.generate({ model: 'gpt-image-1.5', prompt: 'a white siamese cat', n: 1, size: '1024x1024',});
// Edit existing imageconst edit = await openai.images.edit({ model: 'gpt-image-1', image: fs.createReadStream('input.png'), prompt: 'add sunglasses to the cat',});
// Create variations (DALL-E 2 only)const variations = await openai.images.createVariation({ model: 'dall-e-2', image: fs.createReadStream('input.png'), n: 2,});Pricing: No free tier - usage-based pricing on OpenAI account
5. dalle-node
Package: npm install dalle-node
Description: DALL-E wrapper returning arrays of image generations
Features:
- ✅ Simple prompt-to-image interface
- ✅ Returns array of generations
- ❌ Outdated (last updated 2+ years ago)
Status: ⚠️ Consider using official openai package instead
6. node-dalle2
Package: npm install node-dalle2
Description: Type-safe DALL-E 2 library
Features:
- ✅ Type-safe TypeScript support
- ✅ DALL-E 2 API wrapper
- ❌ Not healthy version release cadence (last release 1+ year ago)
- ❌ DALL-E 2 is deprecated
Status: ⚠️ Deprecated - use official openai package
Google Gemini Packages
7. @google/generative-ai (Nano Banana)
Package: npm install @google/generative-ai
Description: Official Google Generative AI SDK with Nano Banana image generation
Features:
- ✅ Official Google support
- ✅ Gemini 2.5 Flash Image (Nano Banana) - 500 free requests/day
- ✅ Gemini 3 Pro Image (Nano Banana Pro) - premium quality
- ✅ Text-to-image, image-to-image, multi-image composition
- ✅ High-fidelity text rendering (logos, diagrams)
- ✅ Up to 4K output resolution
Best For: Projects needing free tier or excellent text rendering in images
Example:
import { GoogleGenerativeAI } from '@google/generative-ai';
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);const model = genAI.getGenerativeModel({ model: 'gemini-2.5-flash-image' });
const result = await model.generateContent([ 'A futuristic cityscape at sunset with flying cars']);
const image = result.response.images[0];Pricing:
- Free: 500 requests/day (Gemini 2.5 Flash Image)
- Paid: ~$0.15 per 4K generation
Stable Diffusion Packages
8. stable-diffusion-api
Package: npm install stable-diffusion-api
Description: TypeScript client for AUTOMATIC1111/stable-diffusion-webui API
Features:
- ✅ Connects to local Stable Diffusion WebUI
- ✅ Full API method coverage
- ✅ ControlNet extension support
- ❌ Requires running webui with
--apiflag - ❌ Last updated 2 years ago (v0.0.7)
Best For: Projects using self-hosted AUTOMATIC1111 webui
Setup:
# Start webui with API enabled./webui.sh --apiExample:
import StableDiffusionApi from 'stable-diffusion-api';
const api = new StableDiffusionApi({ host: 'localhost', port: 7860, protocol: 'http',});
const result = await api.txt2img({ prompt: 'a beautiful landscape', steps: 20, sampler_name: 'Euler a',});9. stable-diffusion-nodejs
Package: npm install stable-diffusion-nodejs
Description: GPU-accelerated JavaScript runtime for Stable Diffusion using ONNX
Features:
- ✅ Local GPU acceleration (CUDA, DirectML)
- ✅ ONNX runtime for cross-platform support
- ✅ No external dependencies once models downloaded
- ✅ Full pipeline control
- ❌ Requires GPU with CUDA or DirectML
Best For: Local inference with GPU acceleration, privacy-sensitive applications
Example:
import { StableDiffusionPipeline } from 'stable-diffusion-nodejs';
const pipeline = await StableDiffusionPipeline.fromPretrained( 'path/to/model', { provider: 'cuda' } // or 'directml' on Windows, 'cpu' on macOS);
const image = await pipeline.generateImage('cyberpunk city');10. stable-diffusion-rest-api
Package: npm install stable-diffusion-rest-api
Description: Local Stable Diffusion REST API for M1/M2 MacBooks
Features:
- ✅ Optimized for Apple Silicon (M1/M2)
- ✅ REST API server
- ✅ Command-line options (—port, —cors, —concurrency)
- ❌ Last published 3 years ago
- ❌ Requires Python v3.10 and Node.js v16
Status: ⚠️ Outdated - consider alternatives
Specialized Packages
11. @imgly/plugin-ai-image-generation-web
Package: npm install @imgly/plugin-ai-image-generation-web
Description: CreativeEditor SDK plugin for AI image generation via fal.ai
Features:
- ✅ Integrates with CreativeEditor SDK
- ✅ Multiple providers via fal.ai:
- FalAiImage.RecraftV3
- FalAiImage.NanoBanana
- FalAiImage.Recraft20b
- OpenAiImage.GptImage1
- ✅ Text-to-image and image-to-image transformations
- ✅ In-editor image generation workflow
Best For: Applications already using CreativeEditor SDK
12. @runpod/ai-sdk-provider
Package: npm install @runpod/ai-sdk-provider
Description: RunPod provider for Vercel AI SDK
Features:
- ✅ Integrates with Vercel AI SDK ecosystem
- ✅ Access to RunPod’s public endpoints
- ✅ Language models + image generation
- ✅ Recently updated (v1.0.1)
Best For: Projects using RunPod infrastructure + Vercel AI SDK
Model Context Protocol (MCP) Servers
What is MCP?
The Model Context Protocol (MCP) is an open standard introduced by Anthropic in November 2024 to standardize how AI systems integrate with external tools and data sources.
Key Events:
- Nov 2024: Anthropic releases MCP as open standard
- Mar 2025: OpenAI officially adopts MCP across products
- Dec 2025: MCP donated to Agentic AI Foundation (Linux Foundation)
MCP Image Generation Servers
1. mcp-image-gen (sarthakkimtani)
GitHub: sarthakkimtani/mcp-image-gen
Description: MCP server enabling image generation via Together AI
Features:
- ✅ Powered by Flux.1 Schnell model
- ✅ Customizable dimensions
- ✅ High-quality image generation
- ✅ Standardized MCP interface
- ✅ Together AI backend
Setup:
{ "mcpServers": { "image-gen": { "command": "npx", "args": ["-y", "mcp-image-gen"], "env": { "TOGETHER_API_KEY": "your-api-key" } } }}Best For: Claude Code users wanting Together AI image generation
2. gmkr-mcp-imagegen
MCP Server: gmkr-mcp-imagegen (on LobeHub)
Description: Multi-provider MCP server for Replicate and Together AI
Features:
- ✅ Supports Replicate and Together AI
- ✅ Provider switching via environment variables
- ✅ Standardized tool interface
- ❌ Requires provider-specific API tokens
Configuration:
{ "mcpServers": { "gmkr-image": { "command": "npx", "args": ["-y", "gmkr-mcp-imagegen"], "env": { "PROVIDER": "replicate", "REPLICATE_API_TOKEN": "your-token" } } }}Provider Options:
PROVIDER=replicate→ RequiresREPLICATE_API_TOKENPROVIDER=together→ RequiresTOGETHER_API_KEY
3. imagegen-mcp (OpenAI Wrapper)
GitHub: spartanz51/imagegen-mcp
Description: MCP server wrapping OpenAI’s Image Generation & Editing APIs
Features:
- ✅ Text-to-image generation
- ✅ Image-to-image editing with masks
- ✅ No extra plugins required
- ✅ Direct OpenAI API integration
Setup:
{ "mcpServers": { "openai-images": { "command": "npx", "args": ["-y", "imagegen-mcp"], "env": { "OPENAI_API_KEY": "your-api-key" } } }}Best For: Claude Code users wanting OpenAI image generation via MCP
OpenAI Responses API with MCP
Announcement: March 2025
OpenAI’s Responses API now supports:
- ✅ Remote MCP server connections
- ✅ Image generation as a tool
- ✅ Streaming image previews during generation
- ✅ Multi-turn image editing workflows
Example:
import OpenAI from 'openai';const openai = new OpenAI();
const response = await openai.responses.create({ model: 'gpt-4', tools: [{ type: 'mcp_server', mcp_server: { url: 'https://your-mcp-server.com' } }], messages: [ { role: 'user', content: 'Generate an image of a sunset' } ]});Provider Comparison
Feature Matrix
| Provider | NPM Package | MCP Server | Free Tier | API Status | Deprecation |
|---|---|---|---|---|---|
| OpenAI DALL-E | openai | imagegen-mcp | ❌ No | ⚠️ Deprecated | May 12, 2026 |
| OpenAI GPT Image | openai | imagegen-mcp | ❌ No | ✅ Active | N/A |
| Google Nano Banana | @google/generative-ai | N/A | ✅ 500/day | ✅ Active | N/A |
| Stable Diffusion | stable-diffusion-api | N/A | Varies | ✅ Active | N/A |
| Together AI (Flux) | Via ai-image | mcp-image-gen | Limited | ✅ Active | N/A |
| Replicate | Via ai-image | gmkr-mcp-imagegen | Pay-per-use | ✅ Active | N/A |
| Midjourney | ❌ None | ❌ None | ❌ No | ❌ No API | Discord Only |
Quality & Use Case Comparison
| Provider | Quality | Speed | Cost | Best For |
|---|---|---|---|---|
| Midjourney | ⭐⭐⭐⭐⭐ | Medium | $$$ | Highest quality art (no API) |
| Flux | ⭐⭐⭐⭐ | Fast | $$ | Midjourney alternative with API |
| GPT Image 1.5 | ⭐⭐⭐⭐ | Fast | $$ | Precise prompt following |
| Nano Banana Pro | ⭐⭐⭐⭐ | Fast | $$ | Text rendering, diagrams |
| Nano Banana | ⭐⭐⭐ | Very Fast | FREE | Prototyping, high volume |
| DALL-E 3 | ⭐⭐⭐ | Medium | $$ | ChatGPT integration |
| Stable Diffusion | ⭐⭐⭐ | Varies | FREE (local) | Open source, privacy |
Midjourney API Alternatives
The Midjourney Challenge
Problem: Midjourney has no official API and remains Discord-only in 2025.
Risks of unofficial APIs:
- Account bans
- Discord rate limits
- Queue delays
- Service instability
Third-Party Midjourney API Services
| Service | Price | Features | Status |
|---|---|---|---|
| APIFRAME | $39/mo (900 credits) | Managed, 30 concurrent, no ban risk | ✅ Active |
| ImagineAPI | Low cost | REST API, instant upscale, cheapest | ✅ Active |
| UseAPI.net | $10/mo | Simple MJ API + Pika, InsightFaceSwap | ✅ Active |
| PiAPI | Varies | Use own MJ account or hosted | ✅ Active |
| GoAPI / TTAPI | Varies | Production-ready | ✅ Active |
⚠️ Warning: All unofficial Midjourney APIs risk account bans and service disruption.
Official Midjourney Alternatives
Instead of unofficial Midjourney APIs, consider these official alternatives:
1. Flux (by Black Forest Labs)
- ✅ Official API available
- ✅ “Midjourney feel” with API access
- ✅ Great at prompt following
- ✅ Low-latency generation
- ✅ In-context generation support
Recommended: Best Midjourney alternative with official API support.
2. Leonardo AI
- ✅ Clean web interface
- ✅ Strong artistic quality
- ✅ Real-time editing tools
- ✅ Generous free tier
Best For: All-around Midjourney alternative with great UX
3. Adobe Firefly
- ✅ Trained on licensed content
- ✅ Safe for commercial use
- ✅ Enterprise-friendly
Best For: Business/commercial applications
4. Stable Diffusion 3
- ✅ 8.1 billion parameters (April 2024 release)
- ✅ Open source
- ✅ Local inference possible
- ✅ API via Stability AI
Best For: Developers wanting open source with strong quality
Recommendations by Use Case
1. Rapid Prototyping / High Volume
Best Choice: Google Nano Banana
Package: @google/generative-ai
Why:
- 500 free requests/day
- Fast generation
- Good quality for prototypes
- Official Google support
2. Multi-Provider Flexibility
Best Choice: Vercel AI SDK or Imagine.js
Packages:
ai+@ai-sdk/openai+@ai-sdk/google@themaximalist/imagine.js
Why:
- Avoid vendor lock-in
- Switch providers easily
- Unified API across models
- Production-ready tooling
3. Claude Code / MCP Integration
Best Choice: MCP Image Generation Servers
Servers:
mcp-image-gen(Together AI / Flux)imagegen-mcp(OpenAI GPT Image)
Why:
- Native Claude Code integration
- Standardized tool interface
- Easy configuration
4. Highest Quality (Official API)
Best Choice: Flux by Black Forest Labs
Alternative: Google Nano Banana Pro
Why:
- Midjourney-level quality
- Official API support
- Reliable service
- Production-ready
5. Local Inference / Privacy
Best Choice: Stable Diffusion
Packages:
stable-diffusion-nodejs(GPU-accelerated)stable-diffusion-api(AUTOMATIC1111 webui)
Why:
- 100% local, no API calls
- Open source
- No usage costs
- Full control
6. ChatGPT Integration
Best Choice: OpenAI GPT Image
Package: openai
Why:
- Direct ChatGPT Plus integration
- Precise prompt following
- Official OpenAI support
- High quality results
7. Text Rendering (Logos, Diagrams)
Best Choice: Google Nano Banana Pro
Package: @google/generative-ai
Why:
- Excellent text rendering
- High-fidelity output
- Specialized for diagrams/posters
- Reliable text placement
8. Cost-Conscious Production
Best Choice: Google Nano Banana (free tier) → GPT Image (paid)
Strategy:
- Use free tier for development/testing
- Switch to paid tier for production
- Monitor usage to stay in free tier when possible
Implementation Quick Start
Multi-Provider Setup (Recommended)
npm install ai @ai-sdk/openai @ai-sdk/googleimport { createOpenAI } from '@ai-sdk/openai';import { createGoogleGenerativeAI } from '@ai-sdk/google';import { generateImage } from 'ai';
// Configure providersconst openai = createOpenAI({ apiKey: process.env.OPENAI_API_KEY });const google = createGoogleGenerativeAI({ apiKey: process.env.GEMINI_API_KEY });
// Generate with OpenAIconst openaiImage = await generateImage({ model: openai.image('gpt-image-1.5'), prompt: 'a serene landscape',});
// Generate with Google (free tier!)const googleImage = await generateImage({ model: google.image('gemini-2.5-flash-image'), prompt: 'a serene landscape',});Simple Single-Provider Setup
npm install @google/generative-aiimport { GoogleGenerativeAI } from '@google/generative-ai';
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);const model = genAI.getGenerativeModel({ model: 'gemini-2.5-flash-image' });
const result = await model.generateContent(['a futuristic cityscape']);const image = result.response.images[0];MCP Server Setup (Claude Code)
1. Install MCP server:
npx -y mcp-image-gen2. Configure Claude Code (~/.claude/mcp.json):
{ "mcpServers": { "image-gen": { "command": "npx", "args": ["-y", "mcp-image-gen"], "env": { "TOGETHER_API_KEY": "your-together-api-key" } } }}3. Use in Claude Code:
Generate an image of a futuristic cityscape at sunsetClaude Code will automatically use the MCP image generation tool.
Migration Guides
Migrating from DALL-E 2/3 to GPT Image
Deadline: May 12, 2026
Before (Deprecated):
const response = await openai.images.generate({ model: 'dall-e-3', prompt: 'a white siamese cat',});After (Recommended):
const response = await openai.images.generate({ model: 'gpt-image-1.5', prompt: 'a white siamese cat',});Changes:
- Replace
dall-e-2→gpt-image-1-miniorgpt-image-1 - Replace
dall-e-3→gpt-image-1.5orgpt-image-1 - API interface remains the same
Adding MCP to Existing Image Generation
If you have:
// Existing image generationconst { generateImage } = require('ai-image');const img = await generateImage('prompt', { provider: 'openai' });Add MCP server for Claude Code access:
- Install MCP server:
npm install -g mcp-image-gen- Configure
~/.claude/mcp.json:
{ "mcpServers": { "image-gen": { "command": "mcp-image-gen", "env": { "TOGETHER_API_KEY": "your-key" } } }}- Now both programmatic AND Claude Code access work!
Common Patterns
Pattern 1: Free Tier → Paid Fallback
async function generateWithFallback(prompt) { try { // Try free tier first (Google Nano Banana - 500/day) const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY); const model = genAI.getGenerativeModel({ model: 'gemini-2.5-flash-image' }); const result = await model.generateContent([prompt]); return result.response.images[0]; } catch (error) { if (error.message.includes('quota')) { // Fall back to paid OpenAI const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY }); const response = await openai.images.generate({ model: 'gpt-image-1.5', prompt: prompt, }); return response.data[0]; } throw error; }}Pattern 2: Multi-Provider Quality Comparison
async function compareProviders(prompt) { const results = await Promise.all([ generateWithOpenAI(prompt), generateWithGoogle(prompt), generateWithStableDiffusion(prompt), ]);
return { openai: results[0], google: results[1], stableDiffusion: results[2], };}Pattern 3: Local → Cloud Fallback
async function generateWithLocalFallback(prompt) { if (hasLocalGPU()) { // Try local Stable Diffusion first const pipeline = await StableDiffusionPipeline.fromPretrained('model'); return await pipeline.generateImage(prompt); }
// Fallback to cloud API const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY); const model = genAI.getGenerativeModel({ model: 'gemini-2.5-flash-image' }); const result = await model.generateContent([prompt]); return result.response.images[0];}Best Practices
1. API Key Management
✅ DO:
- Store keys in environment variables
- Use
.envfiles (never commit to git) - Rotate keys regularly
- Use different keys for dev/staging/prod
❌ DON’T:
- Hardcode API keys in source code
- Share keys in Slack/email
- Use production keys in development
2. Cost Optimization
✅ DO:
- Use free tiers for development (Google Nano Banana: 500/day)
- Cache generated images
- Implement rate limiting
- Monitor usage with alerts
❌ DON’T:
- Regenerate images unnecessarily
- Skip caching in production
- Leave unlimited generation endpoints public
3. Error Handling
✅ DO:
- Implement retry logic with exponential backoff
- Handle quota errors gracefully
- Provide fallback providers
- Log failures for debugging
❌ DON’T:
- Assume API calls always succeed
- Ignore rate limit errors
- Crash on provider failures
4. Provider Selection
For prototyping: Google Nano Banana (free tier)
For production:
- High quality: Flux, Nano Banana Pro
- Cost-effective: GPT Image 1-mini, Nano Banana
- Privacy-sensitive: Local Stable Diffusion
- ChatGPT users: GPT Image 1.5
Limitations & Considerations
OpenAI DALL-E / GPT Image
Limitations:
- ❌ No free tier
- ❌ DALL-E 2/3 deprecated (May 12, 2026)
- ❌ Rate limits apply
- ✅ High quality
- ✅ ChatGPT integration
Google Nano Banana
Limitations:
- ⚠️ 500 requests/day on free tier
- ❌ No free tier for Pro version
- ✅ Excellent text rendering
- ✅ Fast generation
- ✅ Up to 4K output
Stable Diffusion
Limitations:
- ⚠️ Requires GPU for good performance
- ⚠️ Model quality varies
- ⚠️ Outdated npm packages
- ✅ 100% local/private
- ✅ Open source
- ✅ No API costs
Midjourney
Limitations:
- ❌ No official API
- ❌ Discord-only interface
- ❌ Unofficial APIs risk account bans
- ✅ Highest quality
- ✅ Strong artistic style
Future Outlook
2025-2026 Trends
-
MCP Adoption Accelerating
- OpenAI, Anthropic, and others standardizing on MCP
- More MCP servers expected in 2025
-
DALL-E Sunset
- DALL-E 2/3 EOL: May 12, 2026
- Migrate to GPT Image models now
-
Model Consolidation
- Fewer, higher-quality models
- Focus on multi-modal capabilities
-
Free Tier Pressure
- Free tiers may reduce as costs rise
- Lock in Google Nano Banana free tier while available
-
Midjourney API Uncertainty
- Still no official API announced
- Consider migrating to Flux or Leonardo AI
Summary
| Need | Recommended Solution | Package/Server |
|---|---|---|
| Free tier | Google Nano Banana | @google/generative-ai |
| Multi-provider | Vercel AI SDK | ai + provider packages |
| MCP integration | MCP Image Gen | mcp-image-gen |
| Highest quality (API) | Flux | Via ai-image or Replicate |
| Local inference | Stable Diffusion | stable-diffusion-nodejs |
| ChatGPT users | GPT Image | openai |
| Text rendering | Nano Banana Pro | @google/generative-ai |
| Production-ready | Vercel AI SDK | ai |
Sources
- ai-image - npm
- Image Generation using OpenAI API with NodeJs - Medium
- Dall-E Tool | LangChain
- Image generation | OpenAI API
- 2025 Comprehensive Image Generation API Guide - Cursor IDE
- stable-diffusion-api - npm
- Exploring the Top Stable Diffusion API Providers in 2025
- Model Context Protocol Servers - GitHub
- What Is mcp-image-gen? - Skywork AI
- New tools and features in the Responses API | OpenAI
- Top Image Generation & Manipulation MCP Servers
- MCP Server Finder
- Imagine.js — AI Image Generator Library for Node.js
- @google/genai - npm
- 10 Best Midjourney APIs & Their Cost (Working in 2025)
- Best Midjourney API Solutions for 2025 - Apiframe
- The 10 Best Midjourney Alternatives in 2025