best-open-source-llms-2025
Purpose
Comprehensive ranking of top open-source language models as of December 2025, with benchmark comparisons, use case recommendations, and specialization analysis.
Top Open Source Models (2025 Rankings)
Elite Tier (Top 5)
| Rank | Model | Parameters | Key Strengths | Arena Score |
|---|---|---|---|---|
| 1 | Qwen3-235B | 235B (~22B active MoE) | Reasoning, coding, multilingual | 975.53* |
| 2 | DeepSeek-V3.1 | 671B (~37B active MoE) | Cost-efficient, reasoning hybrid modes | 959.80 |
| 3 | GLM-4.5 | Unknown | Tool use (90.6%), web browsing, agentic workflows | - |
| 4 | Kimi K2 | 1T (~32B active MoE) | Agentic intelligence, 200-300 sequential tool calls | LMSYS #1 OSS |
| 5 | Llama 4 Scout | 10M context | Multimodal, extreme long context, stable ecosystem | - |
*Note: Qwen2.5-Max score; Qwen3 ranks higher but separate leaderboard entry
High-Performance Tier (70B+ Models)
| Model | Size | Best For | Key Benchmarks |
|---|---|---|---|
| Llama 3.3 70B | 70B | Structured writing, clean formatting | Tool Use: 77.3 (BFCL) |
| Qwen2.5 72B | 72B | Math/research reasoning, asking clarifying questions | MMLU-Pro CS: 78% |
| DeepSeek 67B | 67B | Coding (HumanEval leader) | - |
| Mixtral 8x22B | 176B (~22B active) | General chat/reasoning, efficiency | - |
Mid-Size Tier (7-32B Models)
| Model | Size | Best For | Performance Notes |
|---|---|---|---|
| Qwen2.5-Coder-32B | 32B | Coding specialist, 300+ languages | Arena: 901.98 |
| DeepSeek-R1-Distill-Qwen-32B | 32B | Advanced reasoning | Beats OpenAI-o1-mini |
| DeepSeek Coder V2 | Various | Code generation/completion specialist | State-of-the-art coding |
| Gemma 3-27B | 27B | Efficiency, Top 10 Arena ranking | - |
Detailed Model Analysis
1. Qwen3 Series (Alibaba) - April 2025
Architecture: Hybrid Mixture-of-Experts (MoE)
Model Variants:
- Qwen3-235B-A22B (flagship: 235B total, ~22B active)
- Qwen3-30B-A3B
- Qwen3-8B, 4B, 1.7B, 0.6B (dense models)
Key Advantages:
- Meets or beats GPT-4o and DeepSeek-V3 on most benchmarks
- Superior multilingual capabilities
- Native 32K context (expandable to 131K with YaRN)
- Apache 2.0 license
Benchmark Performance:
- ArenaHard: 91.0 (vs 85.5 for DeepSeek-V3, 85.3 for GPT-4o)
- AIME’24/25: 80.4 (ahead of QwQ-32B)
- Best open-source LLM as of April 2025
Use Cases: General-purpose excellence, multilingual applications, reasoning tasks
2. DeepSeek V3.1 / DeepSeek-R1 Series
Architecture: Hybrid system with switchable modes
Key Features:
- Released August 2025 (V3.1)
- “Thinking” mode for complex reasoning
- “Non-thinking” mode for faster responses
- DeepSeek-R1: Specialized for financial analysis, complex math, theorem proving
Benchmark Performance:
- LMSYS Arena: 959.80 (2nd overall)
- MMLU-Pro CS: 78%
- MATH-500: 94.5% (DeepSeek-R1-Distill, best score)
- Tool Use (BFCL): 58.55
Specializations:
- DeepSeek-R1: Advanced reasoning
- DeepSeek 67B: Heavy coding (HumanEval leader)
- DeepSeek Coder V2: Code specialist (300+ languages)
Cost Efficiency: 7.3x better pricing than proprietary models
3. GLM-4.5 (Zhipu AI)
Status: Called “best open-source AI model” in recent comparisons
Standout Benchmarks:
- Tool use: 90.6% success rate (beats Claude 4 Sonnet, Kimi-K2, Qwen3)
- Web browsing (BrowseComp): Beats Claude-4-Opus by 8 points
- Consistently top-tier across the board
Key Strengths:
- Superior tool use capabilities
- Strong web browsing/information retrieval
- Excellent for agentic workflows
4. Kimi K2 (Moonshot AI) - July 2025
Architecture: 1 trillion total parameters, 32B activated (MoE)
Context: 128K tokens
LMSYS Rankings (July 17, 2025):
Benchmark Performance:
- Tau2-bench: 66.1
- ACEBench (en): 76.5
- SWE-bench Verified: 65.8
- SWE-bench Multilingual: 47.3
- LiveCodeBench v6: 53.7
- AIME 2025: 49.5
- GPQA-Diamond: 75.1
- OJBench: 27.1
- SimpleQA: 31.0% (leads open-source)
- MMLU: 89.5%
- MMLU-Redux: 92.7%
- IFEval: 89.8% (leads all models)
- Multi-Challenge: 54.1%
Agentic Capabilities (Kimi K2 Thinking variant):
- Executes 200-300 sequential tool calls autonomously
- Released November 2025
- Beats GPT-5 and Claude Sonnet 4.5 on major benchmarks
- Ideal for complex agentic workflows
- Can independently run shell commands, build apps/websites, call APIs, automate data science
vs Llama 4: Kimi K2 specifically post-trained for agentic workflows; stronger in autonomous behavior than Llama 4
5. Llama Series (Meta)
Context: 128K tokens (3.1+)
Strengths:
- Stable, huge ecosystem
- Llama 4 Scout: 10M token context, strong multimodal
- Llama 3.3 70B: Cleanest formatting, best for structured docs/ops
- Llama 3.1 405B: Largest open model (requires distributed deployment)
Benchmark Performance:
- Llama 3.1 405B Tool Use (BFCL): 81.1
- Llama 3.3 70B Tool Use: 77.3
- Llama 3.3 70B: Solid general-purpose performance
Ecosystem: Most mature, fewer dramatic changes, “dependable plateau”
6. Mixtral 8x22B (Mistral AI)
Architecture: 176B total, ~22B active (MoE)
Use Cases:
- General chat/reasoning
- Speed/cost efficiency balance
- Alternative to larger dense models
7. Gemma 3 (Google)
Variants: 1B, 4B, 27B
Strengths:
- Top 10 Arena ranking (27B)
- Efficiency-focused
- Good for resource-constrained deployments
Benchmark Comparison Matrix
Reasoning & Math
| Model | AIME 2025 | MATH-500 | GPQA-Diamond |
|---|---|---|---|
| Qwen3 | 80.4 | - | - |
| DeepSeek-R1-Distill | - | 94.5% | - |
| Kimi K2 | 49.5 | - | 75.1 |
Coding Performance
| Model | SWE-bench Verified | LiveCodeBench | HumanEval |
|---|---|---|---|
| Kimi K2 | 65.8 | 53.7 | - |
| DeepSeek 67B | - | - | Leader |
| Qwen2.5-Coder-32B | - | - | Strong |
Tool Use & Agentic Capabilities
| Model | Tool Use Score | Sequential Tool Calls | Agentic Workflow |
|---|---|---|---|
| GLM-4.5 | 90.6% | - | Excellent |
| Kimi K2 Thinking | - | 200-300 | Best-in-class |
| Llama 3.1 405B | 81.1 (BFCL) | - | Good |
| Llama 3.3 70B | 77.3 (BFCL) | - | Good |
Instruction Following & Knowledge
| Model | IFEval | MMLU | SimpleQA |
|---|---|---|---|
| Kimi K2 | 89.8% | 89.5% | 31.0% |
| Qwen3 | - | - | - |
Use Case Recommendations
By Task Type
| Task | Best Model | Alternative | Rationale |
|---|---|---|---|
| Structured writing/docs | Llama 3.3 70B | Qwen2.5 72B | Cleanest formatting, minimal manual intervention |
| Math/research reasoning | Qwen 2.5 72B | DeepSeek-R1 | Asks clarifying questions, doesn’t fabricate |
| Heavy coding | DeepSeek 67B | Qwen2.5-Coder-32B | HumanEval leader, 300+ languages |
| Agentic workflows | Kimi K2 Thinking | GLM-4.5 | 200-300 tool calls, autonomous execution |
| Tool use | GLM-4.5 | Kimi K2 | 90.6% success rate |
| Multilingual | Qwen3 | - | Distinct advantage |
| Long context (10M+) | Llama 4 | - | 10M token context |
| Long context (128K) | Qwen3 / Llama 3.1 | - | Native 128K support |
| Speed/cost efficiency | Mixtral / Gemma 3 | 8-14B class | Balanced performance |
| General purpose excellence | Qwen3-235B | DeepSeek-V3.1 | Beats GPT-4o on most benchmarks |
By Use Case Priority
Production Systems (Quality Critical):
- Qwen3-235B (general)
- GLM-4.5 (tool use)
- DeepSeek-R1 (reasoning)
Development/Testing (Balanced):
- Llama 3.3 70B (structured output)
- Qwen2.5-Coder-32B (coding)
- Mixtral 8x22B (general)
Autonomous Agents (Agentic Intelligence):
- Kimi K2 Thinking (200-300 sequential tool calls)
- GLM-4.5 (90.6% tool use success)
- Qwen3 (strong reasoning)
Cost-Sensitive Operations:
- DeepSeek V3.1 (7.3x better pricing)
- Gemma 3 (efficiency)
- Mixtral 8x22B (MoE efficiency)
Model Specializations Summary
Coding Excellence
- DeepSeek 67B / Coder V2: HumanEval leader, 300+ languages
- Qwen2.5-Coder-32B: Arena 901.98, May 2025 coding leader
- Kimi K2: Strong LiveCodeBench (53.7), SWE-bench Verified (65.8)
Reasoning & Math
- DeepSeek-R1-Distill: 94.5% MATH-500 (best)
- Qwen3: 91.0 ArenaHard, 80.4 AIME
- Kimi K2: 75.1 GPQA-Diamond
Multilingual
- Qwen3: Distinct multilingual advantage
- Kimi K2: 47.3 SWE-bench Multilingual
Long Context
- Llama 4: 10M tokens
- Qwen3: 32K native (expandable to 131K)
- Llama 3.1: 128K
- Kimi K2: 128K
Agentic Workflows
- Kimi K2 Thinking: 200-300 sequential tool calls (best)
- GLM-4.5: 90.6% tool use success
- DeepSeek-V3.1: Hybrid thinking/non-thinking modes
Value Analysis (2025)
Cost-Performance Leaders:
- Qwen3-235B: Quality 50-57, $0.17-0.42/M tokens
- DeepSeek V3.2: Quality 50-57, $0.17-0.42/M tokens
- Llama 3.3 70B: Quality 50-57, $0.17-0.42/M tokens
Performance Gap: Open source models now 7.3x better pricing than proprietary, with performance gap closing rapidly.
Licensing
Most models listed use Apache 2.0 or similar permissive licenses, enabling commercial use. Always verify specific license terms for production deployments.
Sources
- 10 Best Open-Source LLM Models (2025 Updated): Llama 4, Qwen 3 and DeepSeek R1 - Hugging Face
- Top 10 Open LLMs 2025 November Ranking & Analysis - Skywork AI
- The 11 best open-source LLMs for 2025 - n8n Blog
- Top 9 Large Language Models as of December 2025 - Shakudo
- Open Source vs Proprietary LLMs: Complete 2025 Benchmark Analysis - What LLM?
- LLM Leaderboard - Artificial Analysis
- Kimi K2: Open Agentic Intelligence - Moonshot AI
- Kimi K2: Open Agentic Intelligence - arXiv
- GLM 4.5: The best Open-Source AI model, beats Kimi-K2, Qwen3 - Medium
- Kimi-k2 Benchmarks explained - Medium
- Kimi K2 Thinking: Open-Source LLM Guide, Benchmarks, and Tools - DataCamp
- Kimi K2 vs Llama 4: Which is the Best Open Source Model? - Analytics Vidhya