Purpose

Deep-dive analysis of the best open-source models for coding tasks, including benchmark comparisons, model architectures, and practical recommendations for local deployment.

Executive Summary

Top Open-Source Coding Models (December 2025):

RankModelActive ParamsKey BenchmarkBest For
1Qwen3-Coder-480B35B (MoE)SWE-Bench SOTA (open)Agentic coding, Claude Sonnet 4-level
2DeepSeek-V3.2-Exp37B (MoE)74.2% Aider PolyglotReasoning + coding hybrid
3DeepSeek R1-71.4% Aider PolyglotComplex reasoning + code
4Kimi K2 Thinking32B (MoE)83.1% LiveCodeBenchAgentic tool use
5Qwen2.5-Coder-32B32B denseEvalPlus SOTA (open)Pure code tasks, HumanEval/MBPP

Benchmark Landscape

Key Benchmarks Explained

BenchmarkWhat It TestsWhy It Matters
SWE-Bench VerifiedReal GitHub issue resolutionGold standard for production-level coding
LiveCodeBenchLeetCode/AtCoder problems (contamination-free)Tests algorithmic ability, updated continuously
Aider Polyglot225 Exercism problems across 6 languagesTests instruction-following + multi-language
HumanEval164 function completion problemsClassic benchmark (now saturated, >90% solved)
MBPPBasic Python programmingEntry-level benchmark (saturated)

Important: HumanEval and MBPP are now considered “solved” - top models exceed 90%. SWE-bench and LiveCodeBench are the real differentiators.

Detailed Model Analysis

Tier 1: State-of-the-Art Open Source

1. Qwen3-Coder-480B-A35B (July 2025)

Architecture: 480B total, 35B active per token (MoE)

Key Specs:

  • Context: 256K native, 1M with extrapolation
  • Training: 7.5T tokens (70% code)
  • License: Apache 2.0

Benchmark Performance:

  • SWE-Bench Verified: State-of-the-art among open-source
  • Comparable to Claude Sonnet 4 on agentic coding
  • Best on: Agentic Coding, Browser-Use, Tool-Use

Agentic Features:

  • Trained with long-horizon RL (Agent RL)
  • 20,000 independent environments in parallel training
  • Comes with Qwen Code CLI tool

Memory Requirements: ~250GB at Q4 quantization

2. DeepSeek-V3.2-Exp (Reasoner/Chat)

Architecture: 671B total, 37B active (MoE)

Benchmark Performance:

  • Aider Polyglot: 74.2% (Reasoner) / 70.2% (Chat)
  • LiveCodeBench: 34.38% (significant improvement from V2.5’s 29.2%)
  • Trained on 14.8T tokens

Key Advantage: Best open-source model on Aider leaderboard (coding+reasoning hybrid)

Memory Requirements: ~350GB at Q4 quantization

3. DeepSeek R1

Architecture: Reasoning-focused variant

Benchmark Performance:

  • Aider Polyglot: 71.4%
  • Strong mathematical reasoning integration with code

Best For: Complex problems requiring multi-step reasoning + code generation

4. Kimi K2 Thinking (Moonshot AI)

Architecture: 1T total, 32B active (MoE)

Benchmark Performance:

  • LiveCodeBench v6: 83.1% (among top open-source)
  • SWE-Bench Verified: 65.8%
  • MultiPL-E (HumanEval multilingual): 85.7% (near GPT-4.1’s 86.7%)
  • HumanEval pass@1: 80-90%

Agentic Features:

  • Executes 200-300 sequential tool calls autonomously
  • Best for: coding assistants and AI agent tasks

Memory Requirements: ~500GB at Q4 (needs 512GB Mac Studio)

Tier 2: Highly Capable Open Models

5. Qwen2.5-Coder-32B-Instruct

Architecture: 32B dense

Benchmark Performance:

  • EvalPlus: Highest open-source performance
  • Outperforms models with >20B params (CodeStral-22B, DS-Coder-33B)
  • Aider Polyglot: 16%
  • HumanEval/MBPP: Near-saturated (very high scores)

Best For: Pure code tasks, structured task completion, HumanEval/MBPP/Spider

Memory Requirements: ~20GB at Q4 (easily runs on 256GB Mac)

6. Qwen3-Coder-30B-A3B

Architecture: 30B total, 3.3B active (MoE)

Key Advantage: Blazing fast due to only 3.3B active params

Specs:

  • Context: 256K native
  • Fits on 32-64GB machines (quantized)

Best For: Fast interactive coding, daily development work

Memory Requirements: ~18GB at Q4

7. Codestral 25.01 (Mistral AI)

Architecture: 88B parameters

Benchmark Performance:

  • Aider Polyglot: 11%
  • Copilot Arena: Joint with Claude 3.5 Sonnet and DeepSeek V2.5
  • Strong LiveCodeBench and SQL (Spider) scores

Key Features:

  • 256K context window
  • 80+ programming languages
  • 2x faster than base Codestral
  • Best for: FIM (fill-in-middle), code completion, IDE integration

Note: Not fully open weights (commercial license)

Tier 3: Solid Performers

8. Llama 3.3 70B

Architecture: 70B dense

Benchmark Performance:

  • Good general-purpose coding
  • Aider Polyglot: Lower than specialized models
  • Tool Use (BFCL): 77.3%

Best For: Structured output, documentation, clean formatting

Limitations: Failed highest number of tasks in recent MBPP study

9. Mistral-3.2-24B

Architecture: 24B dense

Performance: Lower than specialized coding models but efficient

Best For: Resource-constrained deployments needing coding ability

Comprehensive Benchmark Rankings

Aider Polyglot Leaderboard (December 2025)

Open-Source Models:

RankModelScoreNotes
1DeepSeek-V3.2-Exp (Reasoner)74.2%Best open-source
2DeepSeek R1 (0528)71.4%Reasoning + code
3DeepSeek-V3.2-Exp (Chat)70.2%Chat variant
4DeepSeek R1 + Claude combo64.0%Hybrid approach
5Qwen2.5-Coder-32B16%Pure code specialist
6Codestral 25.0111%Fast but lower accuracy

For context (proprietary):

  • GPT-5 (high): 88.0%
  • Gemini 2.5 Pro: 83.1%
  • Claude Opus 4: 72.0%

LiveCodeBench (Top Open-Source)

RankModelScore
1Kimi K2 Thinking83.1
2DeepSeek-V334.38%
3Codestral 25.01Strong
4Qwen2.5-CoderStrong

SWE-Bench Verified (Open-Source)

RankModelScoreNotes
1Qwen3-Coder-480BSOTABest open-source
2Kimi K265.8%Agentic approach
3DeepSeek-V3~40-50%Estimated

Note: Open-source models under 40% were common until April 2025. Recent models have pushed this significantly higher.

EvalPlus (Code Generation)

RankModelNotes
1Qwen2.5-Coder-32BSOTA open-source
2Qwen2.5-Coder-7BBeats 20B+ models
3DS-Coder-V2-InstructStrong

Head-to-Head Comparisons

Qwen3-Coder vs Qwen2.5-Coder

AspectQwen3-Coder-480BQwen2.5-Coder-32B
ArchitectureMoE (35B active)Dense (32B)
Training7.5T tokens (70% code)5.5T tokens
Context256K (1M extended)32K
AgenticRL-trained, tool useLimited
SpeedFast (MoE)Moderate
Memory~250GB (Q4)~20GB (Q4)
Best ForComplex agentic tasksPure code generation

Verdict: Qwen3-Coder for complex projects; Qwen2.5-Coder for daily coding

DeepSeek-V3 vs Qwen3-Coder

AspectDeepSeek-V3.2Qwen3-Coder-480B
Aider Polyglot74.2%~60-70% (est.)
SWE-Bench~45% (est.)SOTA open
ReasoningExcellent (hybrid modes)Strong
Memory~350GB (Q4)~250GB (Q4)

Verdict: DeepSeek for reasoning-heavy coding; Qwen3-Coder for agentic workflows

Codestral vs Qwen2.5-Coder

AspectCodestral 25.01Qwen2.5-Coder-32B
Parameters88B32B
Aider11%16%
Copilot Arena-
EvalPlusGoodSOTA
Context256K32K
LicenseCommercialApache 2.0
Speed2x fasterStandard

Verdict: Codestral for IDE/completion; Qwen2.5-Coder for accuracy and open-source

Recommendations by Use Case

For Your M3 Ultra (256GB)

Use CaseRecommended ModelTokens/sec Est.Memory
Daily codingQwen3-Coder-30B-A3B60-80 tok/s~18GB
Complex reasoningDeepSeek R1 (quantized)15-20 tok/s~150GB
Pure code tasksQwen2.5-Coder-32B16-20 tok/s~20GB
Maximum qualityQwen3-Coder-480B (Q3)10-15 tok/s~230GB
General + codeDeepSeek-V3 (Q4)15-20 tok/s~180GB

Quick Install Commands

Terminal window
# Fast daily driver (recommended)
ollama run qwen3-coder:30b
# Best pure code model
ollama run qwen2.5-coder:32b
# DeepSeek for reasoning + code
ollama run deepseek-r1
# Maximum quality (if memory permits)
mlx_lm.generate --model mlx-community/Qwen3-Coder-480B-A35B-Instruct-Q3

By Task Type

TaskBest Open ModelAlternative
Agentic codingQwen3-Coder-480BKimi K2 Thinking
Algorithm problemsKimi K2 Thinking (83.1% LiveCodeBench)DeepSeek-V3
Real GitHub issuesQwen3-Coder-480B (SWE-bench SOTA)DeepSeek-V3
Code completion/FIMCodestral 25.01Qwen2.5-Coder
Multi-languageDeepSeek-V3.2 (Aider 74.2%)Qwen3-Coder
Fast iterationQwen3-Coder-30B (3.3B active)Qwen2.5-Coder-7B
SQL/SpiderCodestral 25.01Qwen2.5-Coder

Industry Insight: “Team Effort” Approach

Based on 2025 benchmarks, the best strategy is using different models for different tasks:

  1. Planning/architecture: DeepSeek R1 or Qwen3 (reasoning)
  2. Code generation: Qwen3-Coder or Qwen2.5-Coder
  3. Code completion/FIM: Codestral 25.01
  4. Complex debugging: DeepSeek-V3.2-Exp (Reasoner)
  5. Agentic workflows: Kimi K2 Thinking or Qwen3-Coder

Saturated vs Active Benchmarks

Saturated (Less Useful Now)

  • HumanEval: >90% solved by top models
  • MBPP: >90% solved by top models
  • These no longer differentiate model quality

Active (Current Differentiators)

  • SWE-Bench Verified: Real-world GitHub issues
  • LiveCodeBench: Contamination-free, continuously updated
  • Aider Polyglot: Multi-language instruction following
  • EvalPlus: Rigorous code generation testing

Sources

  1. Aider LLM Leaderboards
  2. SWE-bench Leaderboards
  3. LiveCodeBench
  4. EvalPlus Leaderboard
  5. LLM Benchmarks 2025 - LLM Stats
  6. Qwen3-Coder: Agentic Coding - Qwen Blog
  7. Best Open-Source LLMs (August 2025) - KeywordsAI
  8. Top Benchmarks for Open-Source Coding LLMs - KeywordsAI
  9. Codestral 25.01 vs Qwen2.5-Coder - Analytics Vidhya
  10. Best LLM for Coding 2025 - Binary Verse AI
  11. Comparing Top 7 LLMs for Coding 2025 - MarkTechPost
  12. Ultimate 2025 Guide to Coding LLM Benchmarks - MarkTechPost